When is tight closure determined by the test ideal?
نویسندگان
چکیده
منابع مشابه
When every $P$-flat ideal is flat
In this paper, we study the class of rings in which every $P$-flat ideal is flat and which will be called $PFF$-rings. In particular, Von Neumann regular rings, hereditary rings, semi-hereditary ring, PID and arithmetical rings are examples of $PFF$-rings. In the context domain, this notion coincide with Pr"{u}fer domain. We provide necessary and sufficient conditions for...
متن کاملRelative test elements for tight closure
Test ideals play a crucial role in the theory of tight closure developed by Melvin Hochster and Craig Huneke. Recently, Karen Smith showed that test ideals are closely related to certain multiplier ideals that arise in vanishing theorems in algebraic geometry. In this paper we develop a generalization of the notion of test ideals: for complete local rings R and S, where S is a module-6nite exte...
متن کاملLocalization and Test Exponents for Tight Closure
We introduce the notion of a test exponent for tight closure, and explore its relationship with the problem of showing that tight closure commutes with localization, a longstanding open question. Roughly speaking, test exponents exist if and only if tight closure commutes with localization: mild conditions on the ring are needed to prove this. We give other, independent, conditions that are nec...
متن کاملThe Ideal Determined by the Unsymmetric Game
In the present paper we study the ideal of all subsets of 3?°> for which the second player has a winning strategy in the unsymmetric game. We describe its cardinal coefficients and the notions of forcing determined by it.
متن کاملRough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Commutative Algebra
سال: 2009
ISSN: 1939-2346
DOI: 10.1216/jca-2009-1-3-591